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Supplementary Material
Implementation Details
7.1. Task Construction
Domain Randomization. To enhance the robustness
and generalization capability of our system, we imple-
ment comprehensive domain randomization strategies
during the environment reset phase. The randomiza-
tion encompasses multiple aspects of the environment:

• Object Mass Randomization: At the beginning
of each episode, object masses are randomized
by scaling each object’s default mass with a ran-
dom factor sampled from a uniform distribution
𝐿 (1, 1.5) (units: kg):

𝑀curr = 𝑀default · 𝑁, 𝑁 → 𝐿 (1, 1.5)

• Object Position Randomization: Small perturba-
tions are applied to the initial positions of objects
to introduce variability (units: meters):

ω𝑂 → 𝐿 (↑0.02, 0.02)
ω𝑃 → 𝐿 (↑0.02, 0.02)

• Target Position Randomization: The initial posi-
tion of the target object within the box is random-
ized. The random displacements are sampled
from (units: meters):

ω𝑂 → 𝐿 (↑0.15, 0.15)
ω𝑃 → 𝐿 (↑0.2, 0.2)

This ensures that the target object can be placed
within 70% of the box’s area.

• Camera Mount Randomization: During data col-
lection, the camera’s mounting position is per-
turbed with small random displacements (units:
meters):

pcamera = pdefault + 𝜴, 𝜴 → 𝐿 (↑0.01, 0.01)3

7.2. RL Training
We employ the Proximal Policy Optimization (PPO)
algorithm [41] to train a continuous control policy
using an actor-critic architecture. Detailed hyperpa-
rameters are provided in Table 5. The policy network
is parameterized as a multi-layer perceptron (MLP)
with three layers of sizes [1024, 512, 256], utilizing
the ELU activation function for improved gradient flow
and non-linearity. The standard deviation of the pol-
icy distribution is learned via a log-std representation,
enabling dynamic adjustment of exploration during
training.

To ensure stable and e!cient learning, we adopt adap-
tive learning rate scheduling, starting at 3↓10↑4. The

advantage function is normalized to reduce variance
in policy gradient updates, while the Generalized Ad-
vantage Estimation (GAE) [46] parameter 𝑄 is set to
0.95, striking a balance between bias and variance.
Gradient clipping with a norm threshold of 1 is ap-
plied to prevent exploding gradients. To constrain
policy updates, we employ a PPO clipping range of
0.1, which limits large deviations from the current
policy, and enforce a KL divergence threshold of 0.02
to promote conservative updates and prevent policy
collapse.

The training runs for a maximum of 50,000 epochs,
with model checkpoints saved every 1,000 epochs.
The best-performing model is selected based on vali-
dation returns and retained after 200 epochs to pre-
vent overfitting. A separate centralized value function
is used for advantage estimation, parameterized as
an MLP with the same architecture as the policy net-
work. The critic network employs a higher learning
rate of 1 ↓ 10↑3 to facilitate faster convergence in
value estimation, a choice informed by preliminary
experiments indicating more stable critic updates with
this configuration.

7.3. Baseline Implementation
In our simulation experiments, we compare our
method against five baseline approaches. Three of
these baselines—Ours w/o RS, Ours w/o 𝑅stir, and Ours
w/o 𝑅clean—are derived by removing specific compo-
nents from our proposed method. The other two base-
lines are Visual-based Motion Planning Search (VMP)
and Grasp-Pick. VMP is a heuristic motion planning
approach that uses target object segmentation masks
to guide the robotic hand toward the target object and
employs predefined rules for retrieval manipulation.
Grasp-Pick involves sequentially grasping and placing
objects based on the support relationships within the
cluttered scene.

VMP. The VMP system implements a vision-guided ma-
nipulation framework for dexterous robotic retrieval
tasks in cluttered environments. It integrates visual
perception, motion planning, and control execution
through a state machine architecture to ensure reliable
object manipulation.

The vision module employs a top-down camera with
a resolution of 1024 ↓ 512, capturing RGB, depth,
and segmentation maps of the workspace. Target ob-
jects are identified using segmentation masks obtained
from the segmentationmap, with their IDs correspond-
ing to known object labels. The center of the target
mask’s bounding box is extracted as the 2D image co-
ordinate, which is projected into 3D space using depth
data to obtain precise object localization. For motion
planning, the robotic arm moves its end e"ector to
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Table 5 | Hyperparameters for PPO Training.

Category Parameter Value Description

Model
Architecture

MLP Layers [1024, 512, 256] Number of neurons per layer

Activation Function ELU Non-linearity used in the network

Training
Parameters

Learning Rate 3 ↓ 10↑4 Step size for policy update

Discount Factor (𝑆) 0.99 Reward discounting factor

GAE Parameter (𝑄) 0.95 Smoothing factor for GAE

Entropy Coe!cient 0 Weight of entropy regularization

Gradient Clipping Norm 1 Prevents gradient explosion

Clip Range (𝑇) 0.1 PPO clipping threshold

KL Threshold 0.02 KL divergence threshold for stopping training

Minibatch Size 512 Batch size for optimization

Mini Epochs 5 Number of updates per batch

Horizon Length 8 Number of steps before update

Max Training Epochs 50,000 Maximum number of training iterations

Value Learning Rate 1 ↓ 10↑3 Learning rate for value function

the computed 3D coordinate and performs a scrape
action to retrieve the object.

When the target object is completely occluded and its
segmentation mask cannot be detected, the system
employs an exploration strategy by randomly sam-
pling four 3D coordinates within the cluttered bin
area. The arm sequentially moves to these coordi-
nates, performing scrape actions to uncover the target
object.

Specifically, the entire motion planning and scrape ac-
tion process employs a four-stage approach to ensure
reliable object retrieval.

1. Pre-approach stage: The end-e"ector moves to a
predefined position (𝑈 = 0.5m) above the target
object. This configuration facilitates subsequent
control of the hand to reach any position within
the bounding box.

2. Final approach stage: Precise positioning is
achieved using visual feedback combined with
damped least squares inverse kinematics:

𝑄 = 𝑉
𝑊 (𝑉𝑉𝑊 + 𝑋𝑌)↑1ω𝑂

where 𝑋 = 0.05 is the damping parameter, 𝑉 is the
Jacobian matrix, and ω𝑂 represents the positional
error.

3. Scraping stage: The system executes a periodic
motion pattern defined by:

𝑂 (𝑍) = 𝑎 sin(2𝑏 𝑐 𝑍 + 𝑑) + 𝑒

where the amplitude 𝑎 = 2.0, frequency 𝑐 =
20Hz, phase shift 𝑑 = 𝑏/4, and o"set 𝑒 = 0.5.

4. Reset stage: The target object has been retrieved,
so the robot arm will return the end e"ector to
its initial position.

The control execution module utilizes position-based
control for both arm and finger joints. Adaptive damp-
ing parameters are applied to ensure stable motion,
while joint limits are strictly enforced throughout the
execution process: 𝑓min ↔ 𝑓 ↔ 𝑓max.

Grasp-Pick. This method relies on support relation-
ships among cluttered objects to guide the grasping
sequence. To ensure these assumptions hold, we de-
signed tailored setups for both simulation and real-
world experiments.

In simulation, object positions are directly accessible,
enabling precise calculation of support relationships.
We employ a KD-Tree [47] to organize the coordi-
nates of objects near the target. Based on Euclidean
distance, we select the three to five nearest objects,
depending on the scenario, and manipulate them se-
quentially to clear access to the target. While this
approach o"ers computational simplicity, it assumes
ideal sensing conditions and may not generalize to
more complex spatial arrangements.

For robotic control, we implement damped least
squares inverse kinematics:

↗q = J𝑊 (JJ𝑊 + 𝑋I)↑1 ↗x,
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Figure 8 | Examples of successful and failed object retrievals on the real robot.

where 𝑋 is the damping coe!cient, J is the Jacobian
matrix, and ↗x is the desired end-e"ector velocity. This
formulation o"ers stable solutions near singularities
but may limit the dexterity needed in cluttered envi-
ronments.

In real-world experiments, sequentially grasping and
removing multiple objects in stacked scenes with a
dexterous hand remains challenging due to perception
and control limitations. To address this, we employ
predefined trajectories for each trial, simulating an ide-
alized execution scenario. While this implementation
provides an upper-bound estimate of this method’s e!-
ciency, it does not reflect the challenges of autonomous
execution in unstructured environments.

7.4. Evaluation metric
Exposure Calculation The primary goal of object re-
trieval is to locate the target object and enhance its
visibility within the camera’s field of view, facilitating
subsequent manipulations. We define exposure as the
proportion of unobstructed pixels of the target object
in the imaging plane. Considering that changes in the
object’s pose can a"ect the number of visible pixels,

we proceed as follows:

At timestep 𝑍, we record the target object’s visible
pixels 𝑔

curr
𝑍

and its 6D pose. Subsequently, all ob-
jects except the target are removed, the target object’s
recorded 6D pose is reset, and its total visible pixels
are recorded as 𝑔

all
𝑍
. The exposure at time 𝑍 is then

computed as:

exposure
𝑍
=

𝑔
curr
𝑍

𝑔
all
𝑍

. (5)

Success in Real-World Experiments. To systemati-
cally evaluate the success rate of object retrieval on the
real robot, we capture images before and after each
task using a side-mounted RealSense D435 camera.
The success of the retrieval is determined by compar-
ing the exposure of the target object in these images.
As illustrated in Figure 8, we present examples of both
successful and failed retrieval attempts.

7.5. Sim-to-Real transfer
For real-world deployment, we collect a set of trajec-
tories generated by our RL expert policy. To ensure
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Table 6 | Hyperparameters of Distilled Policy.

Category Parameter Value Description

Model
Architecture

Input State Dimension 9 Size of input state vector

Action Dimension 13 Number of output actions

History Frames 15 Past frames used as input

Future Action Frames 5 Future actions predicted

Transformer Hidden Size (𝑖𝑀𝑗𝑖𝑘𝑙) 384 Hidden layer size

Number of Attention Heads 6 Transformer attention heads

Number of Transformer Layers 6 Transformer depth

Feed-forward Dimension 2048 FFN hidden size

Dropout Rate 0.15 Dropout probability

Training
Parameters

Batch Size 512 Training batch size

Total Iterations 10,000 Training iterations

Learning Rate 1e-4 Initial learning rate

Optimizer Adam Optimization algorithm

Loss Function Negative Log Product Loss function used

Gradient Clip Norm 1.0 Gradient clipping threshold

data quality and consistency, we first select success-
ful trajectories. We then filter out trajectories where
the finger’s 𝑚-coordinate lower 2,cm above the box,
a threshold empirically chosen to prevent unstable
behavior and reduce the risk of collision with the box
during manipulation. To promote generalization, we
balance the dataset across various target object po-
sitions within the box, ensuring uniform coverage of
spatial configurations. This prevents the model from
overfitting to specific object placements and enhances
its adaptability to unseen scenarios.

The model architecture consists of a state encoder fol-
lowed by a multi-head self-attention mechanism with
six transformer layers, each containing six attention
heads. This design captures complex temporal depen-
dencies across historical state sequences of length 15,
enabling accurate prediction of future actions over
a five-step horizon. The hidden dimension of 384,
paired with a feed-forward expansion ratio of 5.33
(2048/384), strikes a balance between model expres-
siveness and computational e!ciency.

To e"ectively manage the continuous action space
inherent in robotic control, we introduce a custom
Negative Log Product Loss function, which penalizes
trajectory deviations more sensitively than traditional
mean squared error. This loss function emphasizes
multi-step consistency, enhancing the model’s predic-
tive stability. Training is performed using the Adam
optimizer with a learning rate of 1↓10↑4 over 10,000
iterations and a batch size of 512. Mixed-precision

training accelerates computation without compromis-
ing accuracy, while gradient clipping at 1.0 maintains
stable learning dynamics. Hyperparameter selection
was guided by cross-validation on a held-out dataset to
optimize both performance and robustness. Detailed
architectural specifications and hyperparameters are
provided in Table 6. Despite strong simulation perfor-
mance, real-world deployment introduces challenges
such as sensor noise, domain discrepancies, and dy-
namic environmental conditions. Our transformer
model mitigates these issues by leveraging temporal
patterns to predict smooth and consistent actions.
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